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ABSTRACT

We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus, the computational task is
to estimate a time-evolving density ρ(v, t) given noisy observations of the true density ρ†; this contrasts with the standard filtering problem
based on observations of the state v. The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities
ρ. However, for the purposes of tractability, we seek algorithms in state space; specifically, we introduce a mean-field state-space model, and
using interacting particle system approximations to this model, we propose an ensemble method. We refer to the resulting methodology as
the ensemble Fokker–Planck filter (EnFPF). Under certain restrictive assumptions, we show that the EnFPF approximates the Kalman–Bucy
filter for the Fokker–Planck equation, which is the exact solution to the infinite-dimensional filtering problem. Furthermore, our numerical
experiments show that the methodology is useful beyond this restrictive setting. Specifically, the experiments show that the EnFPF is able
to correct ensemble statistics, to accelerate convergence to the invariant density for autonomous systems, and to accelerate convergence to
time-dependent invariant densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles and to
turbulence modeling.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0171827

Data assimilation (DA) is the process of estimating the state
of a dynamical system using observations. Here, we modify
the standard DA setting to allow for observations of statistics

of a system with respect to its time-evolving probability den-
sity. We propose a mathematical framework, a resulting ensem-
ble method, and present numerical experiments demonstrating
accelerated convergence of a system to its attractor. We pro-
pose further applications to problems in climate and turbulence
modeling.

I. INTRODUCTION

The goal of this paper is to introduce a filtering method-
ology that incorporates statistical information into a (possibly
stochastic) dynamical system. In Secs. I A–I C, we present, respec-
tively, a high-level overview of the problem, discuss the motivation
and previous literature, and outline the paper structure and our
contributions.

A. Assimilating statistical observations

We start by presenting a high-level overview of the problem
of incorporating statistical information into a dynamical system; a
detailed problem statement follows in Sec. II A.

Data assimilation (DA) is overviewed in a number of books,
including Refs. 1–4. The problem is to estimate the state of a dynam-
ical system by combining noisy, partial observations with a model
for the system. In the continuous-time DA problem, we have a
stochastic differential equation (SDE),

dv† = f(v†, t) dt +
√

6(t) dW, (I.1)

v†(0) = v
†
0, (I.2)

with solution v† ∈ R
d, and observations given by

dz† = h(v†(t), t) dt +
√

0(t) dB, (I.3)

with z† ∈ R
p. The equations for v† and z† are driven by independent

standard Wiener processes W and B. These SDEs, as with all the
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SDEs in the paper, are to be interpreted in the Itô sense. Filtering
is then the problem of obtaining the best possible estimate of the
posterior density on v†(t) given the past observations {z†(s)}s∈[0,t].
Throughout the paper, we use the † superscript to indicate the true
quantities and omit it for filtered quantities.

Instead of observing a specific trajectory of a dynamical system,
as {z†(t)} given by Eq. (I.3) does, one can also consider obser-
vations of the system’s statistical behavior, that is, observations of
functionals of the probability density ρ†(v, t) over trajectories. This
density reflects the randomness from the initial conditions for v
and/or from the Brownian forcing. For a deterministic dynamical
system (6 ≡ 0), if the initial conditions are random, then ρ†(v, t)
will reflect the changing density over time under the action of the
system’s dynamics, governed by the Liouville equation. (Here, we
use the term Liouville equation for the equation governing evolu-
tion of the density of any ordinary differential equation, not just
in the Hamiltonian setting.) If noise is present, the changing den-
sity is also affected by the Brownian noise W and is governed
by the Fokker–Planck equation, a diffusively regularized Liouville
equation. In this paper, we focus on observations of ρ†(v, t) defined
by replacing Eq. (I.3) with

dz† =
(∫

h(v, t)ρ†(v, t) dv

)

dt +
√

0(t) dB. (I.4)

Here, h(v, t) defines the observed statistics of v, B is a Wiener pro-
cess, and z† ∈ R

p. The filtering problem is to estimate a density
ρ(v, t) given all the past observations {z†(s)}s∈[0,t]. As in the obser-
vation Eq. (I.3), the observations are finite-dimensional, noisy, and
partial. However, since the observations are now of ρ†(v, t) instead
of v†(t), we must specify the dynamics of ρ†(v, t). This is given by
the Fokker–Planck (FP) or Kolmogorov forward equation,

∂ρ†

∂t
= L

∗(t)ρ†, (I.5a)

L
∗(t)ψ = −∇ · (ψ f)+ 1

2
∇ · (∇ · (ψ6)) , (I.5b)

where L∗ is the adjoint of the generator of Eq. (I.1). [We define the
divergence of a matrix as is standard in continuum mechanics; see
Gurtin (1981)5 and Gonzalez and Stuart (2008).6 The divergence of
a matrix S is defined by the identity (∇ · S) · a = ∇ · (STa) hold-
ing for any vector a.] For a deterministic system, with 6 ≡ 0, the
Fokker–Planck equation reduces to the Liouville equation.

An important question is how one would obtain observations
of a system’s statistics for problems of practical relevance. We dis-
cuss this in detail in Sec. I B 1. For now, we proceed on the
assumption that z† solving Eq. (I.4) is given.

Now, Eqs. (I.5) and (I.4) define a filtering problem for ρ(v, t).
This is an infinite-dimensional filtering problem, in contrast to the
finite-dimensional filtering problem for v(t) defined by Eqs. (I.1)
and (I.3). We refer to the filtering problem defined by Eqs. (I.5) and
(I.4) as the Fokker–Planck filtering problem. Note that both Eqs. (I.5)
and (I.4) are linear in ρ†, meaning that the solution to the problem
can be written using the infinite-dimensional Kalman–Bucy (KB)
filter; see SubSec. IV A for more details.

Despite the existence of an exact solution to the filtering prob-
lem, through the infinite-dimensional Kalman–Bucy (KB) filter,

approximating the Gaussian conditional density ρ is in most setting
computationally intractable since the mean is a probability density
function and the covariance is an operator. Thus, we seek inspira-
tion from the success of ensemble Kalman filtering:7 we work in
state space and seek an ensemble that evolves in time a number of
states whose empirical density approximates the filtered ρ. We note
that the particle filter similarly substitutes the problem of evolving
a probability density with that of evolving a number of particles
and weights.8 Furthermore, derivation of ensemble Kalman meth-
ods via a mean-field limit provides a systematic methodology for the
derivation of equal-weight approximate filters.9 We call the resulting
method the ensemble Fokker–Planck filter (EnFPF).

Figure 1 shows a schematic of such an ensemble method. In the
top panel is the true time-varying probability density, in this case of
an Ornstein–Uhlenbeck process. In the bottom panel is an ensemble
of states. At regular intervals, we observe expectations over the den-
sity in the top panel. Using these observations and our model of the
system, we evolve the ensemble over the time interval between the
current and next observations.

B. Motivation and literature review

The subject of Kalman filtering and Kalman–Bucy (KB) filter-
ing in infinite-dimensional spaces is studied in the control theory
literature.10 We emphasize that although we sketch out the basic
mathematical foundations of the Fokker–Planck filtering problem
in Sec. IV, many interesting mathematical problems in analysis and
probability remain open in this area. To the best of our knowl-
edge, the methodology proposed here is the first general method
for assimilating observations of statistics directly into a state-space
formulation of dynamical systems. Our methodology is built on the
conceptual approach introduced in the feedback particle filter,11,12

and earlier related work,13 seeking a mean-field model that achieves
the goal of filtering and can be approximated by particle methods;14

in particular, we seek particle approximations of the mean-field
model inspired by ensemble Kalman methods.9

The problem of recovering a probability density from a finite
number of known moments is called a moment problem. When h in
Eq. (I.4) consists of monomials in v, the problem of reconstructing
ρ is similar to a moment problem, with the major difference that ρ
evolves in time according to a dynamical system. Moment problems
are typically regularized by a maximum entropy approach;15 in the
Fokker–Planck filtering problem, regularization is provided by the
system’s dynamics.

Our motivation comes from a number of applications around
which we organize the remainder of our literature review, after first
discussing the general question of how to obtain observations of
statistics.

1. Obtaining observations of statistics

In typical applications, one can only observe a single trajectory
of a dynamical system, and thus, the statistics of the density will
not be directly available. If we are interested in the statistics of the
invariant measure, as we are for several of the applications discussed
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FIG. 1. The density of an Ornstein–Uhlenbeck process evolving in time (top
panel). At regular intervals, we make observations of this density and use them
to inform the evolution of an ensemble (bottom panel).

below, then for ergodic systems we have that

lim
T→∞

1

T

∫ T

0

h(v†(t)) dt =
∫

h(v)ρ†(v) dv, (I.6)

where ρ† is the invariant density, and thus, an approximation of
the statistics of the invariant measure can be obtained from a long
observed or simulated trajectory of the dynamical system.

For nonautonomous systems, due to lack of ergodicity, obser-
vations of the statistics cannot be made using long time averages.
If the nonstationary forcing is slow enough, however, an adia-
batic approximation, in which the fast scales are considered to be
ergodic with an invariant measure parameterized by the value of
the slow forcing, may be justified.16,17 If the forcing is periodic, then
observations of the phase-dependent statistics could be obtained by
averaging the observables at a given phase over multiple periods.

For certain systems, invariant statistics may be acquired ana-
lytically or by numerically solving a different set of equations. For
example, for the Navier–Stokes equations, the Reynolds-averaged

Navier–Stokes (RANS) equations can be used to approximate the
stationary statistics.

It may be possible to instead formulate a filtering problem
using an observation operator that involves averaging over a finite
time window; we leave this for future work. This problem was con-
sidered in Ref. 18, but only a heuristic solution was proposed. We
note that other works have made use of observation operators with
time-delayed observations,19,20 albeit for different purposes.

In Secs. I B 2–I B 5, we review the possible applications of the
ensemble Fokker–Planck filter.

2. Acceleration of convergence to a (possibly

time-dependent) invariant measure

Acceleration of the time to convergence of dynamical models to
their invariant measure (often referred to as the “spin-up” period or
the transient) is of importance in many fields, including climate21–24

and other fluid problems,25 Langevin sampling,26,27 and turbulence
simulation.28

For a stochastic differential equation with an invariant mea-
sure, under conditions described in Goldys and Maslowski (2005),29

the convergence to this invariant measure is exponential with an
exponent related to the spectral gap of the corresponding generator.

In this paper, we show that this convergence can be acceler-
ated using the ensemble Fokker–Planck filter, and this is the primary
application we test in the numerical experiments. In particular, if
some statistics of the invariant measure are known, these statistics
can be assimilated into the ensemble, obtaining an ensemble whose
empirical density is closer to the invariant measure.

To our knowledge, existing methods of accelerating conver-
gence of model trajectories to the invariant measure have been
problem-dependent, as in Bryan (1984).21 Isik (2013)30 and Isik,
Takhirov, and Zheng (2017)31 studied a relaxation-based method
of accelerating the convergence to equilibrium of the Navier–Stokes
equations, which bears some resemblance to our approach.

Non-autonomous (also referred to as non-stationary) and ran-
dom dynamical systems can have time-dependent attractors, known
as pullback attractors, to which the evolution converges.32 A pull-
back attractor is the set that the dynamical system approaches when
evolved in time from the infinite past to a fixed time (say time 0
without loss of generality). We refer to the probability measure asso-
ciated with these attractors as time-dependent invariant measures,
following Chekroun, Simonnet, and Ghil (2011).33 These objects
are of considerable interest for climate.22,33,34 The EnFPF can also
accelerate convergence to these invariant measures.

The problem of accelerating convergence to the invariant mea-
sure is related to the problem of controlling the Fokker–Planck
equation, where a density is controlled in order to reach to a speci-
fied target distribution,35 and to statistical control, wherein one aims
to return a perturbed system to its equilibrium statistics.36

Furthermore, the EnFPF could be tested for accelerating the
convergence of sampling algorithms such as Langevin sampling
and Markov chain Monte Carlo, when some statistics of the target
density are known a priori.

Finally we note that when estimating Koopman or
Perron–Frobenius operators, it is often necessary to have a large
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number of trajectories from initial conditions sampled from the
invariant measure.

3. Parameter estimation

The EnFPF could be used for jointly updating states and
parameters using statistical observations by adopting a state aug-
mentation approach. Other work has adapted methods from data
assimilation for parameter estimation using time-averaged statis-
tics, assumed to be close to the statistics on the invariant measure
by ergodicity.37–40

4. Correcting for model error

Generally, methods that correct for model error are formulated
in terms of forecast performance at some lead time, e.g., 41 and 42.
If one is instead interested in correcting statistical properties, one
can postulate a parametric form for the model error and use time-
averaged observations to estimate the parameters, as discussed in
the preceding paragraph. Alternatively, the EnFPF could be tested
for directly correcting model error using statistical observations in
a similar manner to the use of classical DA in reducing the impact
of model error for forecast applications.43,44 The analysis increments
could then be taken to approximate model error corrections and
training a machine learning model to predict these corrections could
be tested, as has been done for classical DA.43–45

Statistical properties have previously been used to learn closure
models for the Navier–Stokes equation using a 3DVar-like scheme.46

5. Assimilation of time-averaged observations

In paleoclimate, proxy records often represent time averages
instead of instantaneous measurements. Methods have been devel-
oped for making use of time-averaged observations for state estima-
tion in the paleoclimate data assimilation literature.18 As discussed
above, in the case of slow forcing, time-averaged observations can
be used to approximately track the system’s time-varying statistics,
enabling their use in the EnFPF.

C. Contributions and paper outline

The primary contributions of this work are (i) to establish
a framework for the filtering of stochastic dynamical systems or
dynamical systems with random initial data, given only observations
of statistics; (ii) to introduce ensemble-based state-space methods
for this filtering problem via a mean field perspective; and (iii) to
demonstrate numerically that the proposed methods are effective at
guiding dynamical systems toward observed statistics. (i) is covered
in Secs. II A and IV; (ii) is covered in Secs. II B–II F; and (iii) is
covered in Sec. III.

In Sec. II A, we outline the Fokker–Planck filtering prob-
lem and distinguish it from the standard filtering problem. In
Secs. II B–II D, we introduce a mean-field algorithm and its parti-
cle and discrete-time approximations, culminating in the ensemble
Fokker–Planck filter (EnFPF). In Sec. II F, we discuss implementa-
tion details, including the approximation of the score function and
a square-root ensemble formulation with reduced computational
effort.

In Sec. III, we carry out numerical experiments with sev-
eral chaotic dynamical systems, both autonomous and non-
autonomous, and based on the Lorenz63, Lorenz96, and Kuramoto–
Sivashinsky models. In particular, we demonstrate that the EnFPF
can accelerate the convergence of these systems to their invariant
densities, using information about the moments of these densities.

In Sec. IV, we provide a justification of our algorithm. We first
formulate the KB filter for densities (Sec. IV A), which provides a
solution to the Fokker–Planck filtering problem in function space,
and analyze some of its properties in Appendix A. We then propose
an ansatz amenable to a mean-field model (Sec. IV B) and show its
equivalence to the KB filter for densities under some assumptions
(Theorem 1 in Appendix B). We then show how this ansatz can be
approximated by a mean-field model (Sec. IV C, providing further
details in Appendix C).

Finally, in Sec. V, we give conclusions and outlook for future
work.

II. PROBLEM AND ALGORITHM

In Sec. II A, we introduce the probabilistic formulation of
the standard filtering problem, and then contrast it with the
Fokker–Planck filtering problem, where data are in the form of
statistics. Section II B demonstrates an approach to this problem
using a mean-field model. In Sec. II C, we introduce a particle
approximation of the mean-field algorithm, which forms the basis
of the proposed EnFPF.

A. Problem statement

1. The standard filtering problem

In the standard filtering problem, we are given state observa-
tions z†(t) of v†(t), defined by Eq. (I.3), and the dynamics of v†(t)
are given by Eq. (I.1). The problem is then to find an equation for
the conditional distribution of v|Z†(t), where Z†(t) = {z†(s)}s∈[0,t]

are the observations accumulated up to time t under a fixed real-
ization of B. The solution to the filtering problem is given by the
Kushner–Stratonovich equation,

∂ρ

∂t
= L

∗(t)ρ +
〈

h(v, t)− Eh,
dz†

dt
− Eh

〉

0(t)

ρ, (II.1)

where 〈·, ·〉A ≡ 〈A−1/2·, A−1/2·〉 is the weighted Euclidean inner
product. Treatments of the standard filtering problem can be found
in Jazwinski (1970)1 and Bain and Crisan (2009).47

2. The Fokker–Planck filtering problem

In this paper, we consider instead noisy observations of ρ†(v, t):
the observation process z†(·) is given by

dz† = H(t)ρ†(·, t) dt +
√

0(t) dB. (II.2)

Here, H(t) is a linear operator mapping the space of probability den-
sities into a finite-dimensional Euclidean space, and the dynamics
of ρ† are given by the Fokker–Planck Eq. (I.5). That is, we make
observations of statistics of the dynamical system. We refer to the
problem of finding the conditional density of v|Z†(t), where Z†(t)
= {z†(s)}s∈[0,t] is given by Eq. (II.2), as the Fokker–Planck filtering
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problem. In the following subsection, we propose an approximation
to the solution to this problem in state space.

B. Mean-field equation

Although in Sec. IV A we treat the Fokker–Planck filtering
problem for more general H, in the rest of what follows we focus
on the setting where

H(t)ρ = E[h(v, t)] =
∫

h(v, t)ρ(v, t) dv, (II.3)

for some h. With this assumption on H, Eq. (II.2) reduces to
Eq. (I.4). In particular, if h is a monomial in v, e.g., h(v) = v
or h(v) = vec(v ⊗ v), then Hρ will correspond to moments of ρ.
We will henceforth use E to denote expectation under ρ, unless
otherwise indicated.

Remark 1. Note that if ρ†(v, 0) = δ(v − v
†
0) for some v

†
0 and

6 = 0, then the Fokker–Planck filtering problem is equivalent to the

standard filtering problem with v†(0) = v
†
0, observation operator h,

and 6 = 0.
Our proposed methodology is to introduce a mean-field model

for variable v, depending on its own probability density func-
tion ρ(v, t). The mean-field model is chosen to drive the system
toward the observed statistical information. Algorithms are then
based on particle approximation of this model, leading to ensemble
Kalman–type methods. The mean-field model considered is

dv = f(v, t) dt +
√

6(t) dW + K(t)
(

dz†−dẑ
)

, (II.4a)

dẑ = (Eh)(t) dt +
√

0(t)dB, (II.4b)

K(t) = Cvh(t)0(t)−1, (II.4c)

Cvh(t) = E
[

(v(t)− Ev(t)) (h(v, t)− (Eh)(t))T
]

. (II.4d)

The terms in the mean-field model can be understood intuitively
as follows. The first two terms on the right-hand side of Eq. (II.4a)
are simply the dynamics of the system (I.1). The third term resem-
bles the standard nudging observer term from control theory, with
an ensemble Kalman–inspired gain, and the use of noisy simulated
data, as in the stochastic ensemble Kalman filter.

In some problems, we find that it is beneficial to include an
additional score-based term in the model, replacing Eq. (II.4a) by

dv = f(v, t) dt +
√

6(t) dW + K(t)
(

dz†−dẑ
)

+ K(t)0(t)K(t)T∇ log ρ(v, t) dt. (II.5)

The additional term induces negative diffusion in the equation for
the density of v, exactly balancing the diffusion introduced through
z† and ẑ. We justify Eqs. (II.4) and (II.5) in detail in Sec. IV by
building on the Fokker–Planck picture in density space.

C. Particle approximation of mean-field equation

In order to tractably implement the mean-field Eq. (II.4), we
use a particle (or ensemble) approximation. That is, given J particles,

we consider the following interacting particle system for {v(j)}J
j=1:

dv(j) = f(v(j), t) dt +
√

6(t) dW(j) + K(t)
(

dz†−dẑ(j)
)

, (II.6a)

dẑ(j) = (EJh)(t) dt +
√

0(t) dB(j), (II.6b)

K(t) = (Cvh(t))
J
0(t)−1. (II.6c)

Here, E
J denotes expectation with respect to the empirical measure

formed by equally weighting Dirac measures at the particles {v(j)}J
j=1;

(Cvh)
J

denotes the sample cross-covariance computed using this
empirical measure,

Cvh(t) = E
J
[

(v(t)− Ev(t)) (h(v, t)− (Eh)(t))T
]

.

Note that unlike the ensemble Kalman filter, the predicted
observation for each ensemble member, Eq. (II.6b), involves the
expectation of h over the ensemble, instead of the observation
operator applied to that ensemble member.

D. Discrete-time approximation of mean-field

equation

A discrete-time analog of Eq. (II.6) is given by

v̂
(j)
i+1 = 9i

(

v
(j)
i

)

+ ξ
(j)
i , (II.7a)

v
(j)
i+1 = v̂

(j)
i+1 + Ki+1

(

y
†
i+1−ŷ

(j)
i+1

)

, (II.7b)

ŷ
(j)
i+1 = E

J[hi+1(v̂i+1)] + η
(j)
i+1, (II.7c)

Ki+1 =
(

Ĉ
vh
i+1

)J((
Ĉ

hh
i+1

)J + (0d)i+1

)
−1

, (II.7d)

where ξ
(j)
i ∼ N (0, (6d)i), η

(j)
i ∼ N (0, (0d)i), hi(v) = h(v, t), and

(Ĉ
vh
i+1)

J = E
J[(v̂i+1 − E

Jv̂i+1)

⊗ (hi+1(v̂i+1)− E
J[hi+1(v̂i+1)])], (II.8)

(Ĉ
hh
i+1)

J = E
J[(hi+1(v̂i+1)− E

J[hi+1(v̂i+1)])

⊗ (hi+1(v̂i+1)− E
J[hi+1(v̂i+1)])]. (II.9)

Furthermore, we introduce the following rescalings adopted in Law,
Stuart, and Zygalakis (2015):3

f(·, t) = (9 i(·)− I·)/τ , z
†
i+1−z

†
i = τy

†
i+1,

6(iτ) = (6d)i/τ 0(iτ) = τ(0d)i, i = t/τ .
(II.10)

Then, Eq. (II.7) can be seen to be a discretization of Eq. (II.6) with
time step τ . More justification is given for these rescalings in Sal-
gado, Middleton, and Goodwin (1988)48 and Simon (2006).49 Note

that both Ki+1 = (Ĉ
vh
i+1)

J
(0d)

−1
i+1 and Eq. (II.7d) are consistent with

the continuous-time gain as τ → 0. We use the latter, similar to the
discrete-time Kalman filter.
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E. Score function term

We now discuss further computational issues that arise when
Eq. (II.4a) is replaced by (II.5). This term involves the score func-
tion, defined as ∇ log ρ, but with an additional preconditioning. If
this term is added to the discrete-time particle version of the filter,
Eq. (II.7b) becomes

v
(j)
i+1 = v̂

(j)
i+1 + Ki+1

(

y
†
i+1−ŷ

(j)
i+1

)

+ Ki+1(0d)i+1K
T
i+1(∇ log ρi+1)

J(v̂
(j)
i+1

)

, (II.11)

where (∇ log ρi+1)
J denotes particle-based approximation of the

score function using {v̂(j)i+1}
J

j=1
. If we make the assumption that the

density is Gaussian with mean Ev and covariance Cvv, the score
function takes on a simple form,

∇ log ρ = −(Cvv)
−1
(v − Ev). (II.12)

A natural particle approximation (∇ log ρ)J follows by replacing the
mean and covariance with the corresponding quantities computed
under the empirical measure of the set of particles.

More general kernel-based nonparametric estimators for the
score function have been developed, such as those defined in Zhou,
Shi, and Zhu (2020)50 and implemented in the kscore package. In
the numerical experiments reported in this paper, we either omit
the score term completely or use it and employ only the Gaussian
approximation.

F. Implementation

1. Ensemble square-root formulation

In order to make the method scale well to high dimensions,
an ensemble square-root formulation51 of Eq. (II.7) can be used,
although we do not use it in the numerical experiments reported
here. The advantage of this formulation is that the most expen-
sive linear algebra operations are rewritten in the ensemble space,
resulting in favorable computational complexity when J is much
smaller than the state-space dimension d or observation-space
dimension p. [Note, however, that in many applications with a high-
dimensional state space, the statistics of interest may be relatively
low-dimensional, such that the regular version of the algorithm
(II.7) will be feasible.]

To implement this method, we write (Cvv)J = VVT, (Cvh)
J

= VYT, and (Chh)
J = YYT, where the jth column of V and the jth

column of Y are given by

V(j) = (v(j) − E
Jv)/

√

J − 1,

Y(j) = (h(v(j))− E
Jh)/

√

J − 1,
(II.13)

respectively. Then, K can be written as

K = VYTW, (II.14)

where W = (0−1
d − 0−1

d Y(I + YT0−1
d Y)

−1
YT0−1

d ) by the Woodbury
identity.

We assume that0−1
d is provided and can be applied cheaply, for

example, if it is diagonal. This is a standard assumption.51 With this
expression, K can be computed in O(J3 + J2p + Jp2 + dJp).

Note that the Gaussian score function approximation Eq. (II.11)
cannot be applied in cases when J < d since (Cvv)J will be singu-
lar. We do not consider the score function term in the complexity
analysis.

The complexity is, thus, a quadratic polynomial in d and p,
whereas various ensemble square-root filters can be implemented to
be linear in p and d. The latter rely on the fact that the in the standard
Kalman filter the updated covariance can be written as (I − KH)Cvv,
where H is the observation operator. The EnFPF cannot be written
in this way. Whether the EnFPF can be reformulated to be linear in
p and d by another approach is a topic for future research.

2. Code

The open-source Julia code for the EnFPF is available at
https://github.com/eviatarbach/EnFPF. In the numerical experi-
ments that follow, we compute the Wasserstein distance (explained
in Sec. III) using the Python Optimal Transport library.52 We used
the parasweep library to facilitate parallel experiments.53

3. Numerical methods for the test models

In Sec. III, we will present numerical experiments with the
Lorenz63, Lorenz96, and Kuramoto–Sivashinsky models. We inte-
grate the Lorenz63 and Lorenz96 models using the fourth-order
Runge–Kutta method, with a time step of 0.05 for both. We inte-
grate the Kuramoto–Sivashinsky equation in Fourier space using the
exponential time differencing fourth-order Runge–Kutta method54

with 64 Fourier modes and a time step of 0.25.

III. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical experi-
ments applying the discrete-time EnFPF of Sec. II D to the Lorenz63,
Lorenz96, and Kuramoto–Sivashinsky systems. The first three sub-
sections are devoted, respectively, to these three models; a final
fourth subsection returns to the Lorenz63 model, with quasiperiodic
forcing.

We found in the experiments that assimilating too often can
cause degraded results for some systems, as opposed to the situation
in standard filtering, where increased assimilation frequency is typ-
ically preferred. In the standard filtering problem, there is a single
true trajectory, and under certain conditions, the filtering distribu-
tion will converge to this trajectory in the limit of zero observational
noise.3,55 In the non-zero noise case, however, the filtered time-series
(e.g., the maximum a posteriori estimate) will not even generally
be a trajectory of the dynamical system, except in methods such
as strong-constraint 4DVar. Here, we expect that the problem of
ensemble members deviating from being trajectories can be ampli-
fied, since the method only aims to match statistical features of the
entire ensemble. Thus, if assimilation is done too frequently, then
ensemble members may be pushed too far from being trajectories
into unphysical or unstable parts of the phase space. In fact, we
found the assimilation frequency to be a key tuning parameter. We
refer to a single forecast–assimilation step [Eq. (II.7)] as a cycle, as is
common in the DA literature, and each cycle lasts for τ time units.
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We found, furthermore, that the score term did not consis-
tently improve filtering performance. In the experiments that fol-
low, we omit the score term except in the experiments with the
Kuramoto–Sivashinsky system in Sec. III C, where it leads to clear
improvements when used, together with the Gaussian approxima-
tion, in the form of Eq. (II.11). For both the Lorenz models, we
found that the inclusion of the Gaussian approximation of the score
degraded performance and the use of the kernel-based score approx-
imations, based on the paper of Zhou, Shi, and Zhu (2020),50 was no
better than simply omitting the term altogether.

In the experiments below, we use a Wasserstein metric to quan-
tify the distance between the ensemble distribution and the invariant
density. We estimate the invariant density using an ensemble inte-
grated for a sufficiently long time. We employ the W1 Wasserstein
metric that allows us to compute distances between empirical dis-
tributions. The code for computing this distance is readily available
(see Sec. II F 2).

A. Lorenz63 model

For the experiments in this subsection, we use the Lorenz
(1963)56 model,

dx

dt
= σ(y − x),

dy

dt
= x(r − z)− y,

dz

dt
= xy − βz,

(III.1)

with the standard parameter values σ = 10, r = 28, and β = 8/3.

1. Assimilating time-varying means and second

moments

We first verify the ability of the EnFPF to force an ensem-
ble to adopt time-varying statistics. We do this by applying the
EnFPF to a 10-member ensemble, with noisy statistical observa-
tions of the means and uncentered second moments of the three
variables coming from a 100-member ensemble being evolved con-
currently. The difference between the statistics computed over the
10- and 100-member ensembles arise due to both sampling errors
and different initial conditions. The 100-member ensemble (despite
having its own sampling error) better approximates the true statis-
tics of the system, and we view these 100-member ensemble statistics
as the truth, based on which we may compute errors in the statis-
tics of 10-member ensembles. We assimilate observations every 0.2
time units, with an observation error covariance set to 20% of the
time variability of each statistic computed over the 100-member
ensemble.

Figure 2 shows the resulting error in the means and second
moments of the 10-member ensemble, compared with the errors
arising from an unfiltered run of the 10-member ensemble; in both
cases, the errors are computed by comparison with the 100-member
ensemble. After several cycles, the filter appears to reach an asymp-
totic error on the order of the observation error, and this error is
significantly lower than that arising in the unfiltered case.

FIG. 2. The impact of filtering on the root-mean-square error (RMSE) in the mean
and second moment in the Lorenz63 model.

Table I shows the impact of the observation error covariance
magnitude on the filtering performance. The setup is otherwise the
same as that described above. As expected, the error increases as 0
is increased, although still outperforming the unfiltered ensemble.

2. Accelerating convergence to the invariant density

We now test the ability of the EnFPF to accelerate conver-
gence to the invariant density. We assimilate observations of fixed
statistics of the invariant density, the means and second moments of
the three variables, into a 100-member ensemble. We use the same
assimilation frequency and observation error as in Sec. III A 1.

Figure 3 shows the impact of the EnFPF on the convergence
to the invariant density. In this case, we only apply the EnFPF for
the first 30 cycles (indicated by the pink rectangle) and then let the
ensemble evolve under the regular Lorenz63 dynamics. We see that
the EnFPF leads to a more rapid convergence: by the end of the fil-
tering period, the distance is close to the asymptotic one, while it
takes at least 100 cycles for the unfiltered case to reach the same.
Figure 4 visualizes in state space this rapid convergence toward the
invariant density via the EnFPF.
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TABLE I. The impact of the observation error covariance on filtering performance. In

the first column are the percentages of the standard deviation of the time variability

of each statistic taken to be the observation error and in parentheses are the square

root of the total variance of the observation error in the statistic. With no filtering, the

RMSE is 2.5 in the unfiltered means and 73 in the second moments. The RMSE is

averaged over 1400 cycles after 100 transient cycles.

Means
Observation error Filtered RMSE

10% (0.088) 0.11
35% (0.31) 0.40
60% (0.53) 0.69
85% (0.75) 0.97

Second moments
Observation error Filtered RMSE

10% (2.8) 20
35% (9.9) 23
60% (17) 29
85% (24) 35

3. Impact of higher-order moments

Figure 5 shows the convergence to the invariant measure of
Lorenz63 with different assimilated moments of x and y, namely,
the first, first and second, and first, second, and third marginal
moments. Assimilating the first-order moments accelerates the con-
vergence to the invariant measure compared to the unfiltered case.
Adding the second- and third-order moments appears to result in
the most rapid initial rate of convergence, and after about 50 cycles
assimilating the first two and the first three moments leads to a
similar asymptotic distance to the invariant measure.

FIG. 3. The estimated Wasserstein distance to the invariant density in Lorenz63
in unfiltered and filtered cases. For the filtered case, the first and second moments
are assimilated. Each curve is averaged over 10 different initializations.

FIG. 4. Top panel: an ensemble evolving in time from left to right, superimposed
on the invariant density of Lorenz63 in the x–z plane. Orange corresponds to
higher probability density and blue to lower. Bottom panel: the same but with the
EnFPF applied.

B. Lorenz96 model

We now test the convergence to the invariant density of the
Lorenz (1996)57 model,

dxi

dt
= −xi−1(xi−2 + xi+1)− xi + F, (III.2)

where the indices i range from 1 to D and are cyclical. We use F = 8
and D = 40 variables. This is a model of an atmospheric latitude
circle that is commonly used in data assimilation experiments.

We assimilate the means and second moments of the 40 vari-
ables on the invariant density, with an observation error covariance
of 20% of the temporal variability of the statistics computed over

FIG. 5. The estimated Wasserstein distance to the invariant density in Lorenz63,
in unfiltered and filtered cases when different moments are assimilated. The
curves are averaged over 25 initial conditions, and the shaded areas correspond
to ± the standard error over the initializations. Here, for the filtered cases, the
EnFPF is applied at every cycle.
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FIG. 6. The estimated Wasserstein distance to the invariant density in Lorenz96
in unfiltered and filtered cases. For the filtered case, the first and second moments
are assimilated. Here, we show the mean of the Wasserstein distances corre-
sponding to the marginal density for each variable.

a 100-member ensemble. We assimilate every 0.05 time units into
a 100-member ensemble for 40 cycles. Figure 6 shows that the
convergence toward the invariant density is thereby significantly
accelerated.

C. Kuramoto–Sivashinsky model

We now carry out experiments with the Kuramoto–Sivashinsky
model, a chaotic partial differential equation in one spatial dimen-
sion,

ut + uxxxx + uxx + uux = 0, x ∈ [0, L]. (III.3)

We use L = 22 and periodic boundary conditions, discretized using
64 Fourier modes (see Sec. II F 3 for details on the numerical
method).

We assimilate the means and second moments of the invariant
density of the 64 variables in physical space, every 2.0 time units.
We assimilate for 30 cycles using a 100-member ensemble and again
use an observational error covariance of 20% of the temporal vari-
ability. Figure 7 shows the results with and without the score term
included. In both cases, there is an acceleration compared to the
unfiltered case; inclusion of the score term considerably accelerates
convergence.

D. Time-dependent invariant measures

We now use the Lorenz63 model [Eq. (III.1)] but with the r
parameter subject to quasiperiodic forcing, as in Daron and Stain-
forth (2015),22

r(t) = 28 + sin (2π t)+ sin
(√

3t
)

+ sin
(√

17t
)

. (III.4)

Since this system is non-autonomous, it possesses for each time t
a pullback attractor with a corresponding time-dependent invari-
ant measure, as discussed in Sec. I B. The measure at time t can
be approximated by the empirical density at time t of an ensemble

FIG. 7. The estimated Wasserstein distance to the invariant density in the
Kuramoto–Sivashinsky equation in unfiltered and filtered cases. For the filtered
case, the first and second moments are assimilated. Here, we show the mean
of the Wasserstein distances corresponding to the marginal density for each
variable.

initialized sufficiently far back in time, at t − T for some large T.
Here, we evolve a 100-member ensemble using T = 500 time units
to approximate the invariant measures at time t. Then, we evolve
the ensemble for the additional time period of t to t + 20 to obtain
approximations to the invariant measures in this period.

We evolve two separate 100-member ensembles for the same
time period t to t + 20, but with T = 0 (no spin-up). We apply
the EnFPF to one of these ensembles and not the other. For the
EnFPF, we assimilate every 0.05 time units with an observation error
covariance of 20% of the temporal variability. We then measure
the distance between the empirical densities of these two ensembles
and the one approximating the invariant measure described in the
previous paragraph.

Figure 8 shows that the convergence to the time-dependent
invariant measures is indeed accelerated by the EnFPF, reaching
a comparable asymptotic distance to the invariant measure in less
than half the time.

IV. JUSTIFICATION OF ALGORITHM

A. Kalman–Bucy (KB) filter for densities

Since both the Fokker–Planck equation (I.5) and the observa-
tion equation (II.2) are linear and since all noise is additive Gaussian,
the conditional probability measure over densities, ρ|Z†(t), is a
Gaussian. This filtering problem can be solved using a Kalman–Bucy
filter in Hilbert space, posing significant challenges because it
involves finding a sequence of probability measures on an infinite-
dimensional space of functions (densities).

We start by defining the Hilbert space H = L2(Rd, R) with
inner product

〈a, b〉H ≡
∫

ab dv. (IV.1)
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FIG. 8. The estimated Wasserstein distance to the invariant density in the non-
autonomous Lorenz63 model in unfiltered and filtered cases. For the filtered case,
E[xi ], E[y i ], and E[zi ] for i = 1, 2, 3 are assimilated.

We consider density functions ρ ∈ H, and we require that ρ(v, t)
→ 0 as v → ∞. Note that we will sometimes use this inner prod-
uct in situations where one of the arguments is only locally square
integrable; in particular, we will need to use the constant func-
tion 1(v) = 1. To distinguish them from the Hilbert space inner
product, we denote the standard Euclidean inner product in R

p

as 〈·, ·〉R
p and the weighted Euclidean inner product, defined for

any strictly positive-definite and symmetric A ∈ R
p×p, as 〈·, ·〉A

≡ 〈A−1/2·, A−1/2·〉R
p .

Recall definition Eq. (I.5b) of the adjoint of the generatorL. We
are given the dynamics and observation equations (I.5) and (II.2):

dρ†(v, t) = L
∗(t)ρ†(v, t) dt, (IV.2)

dz†(t) = H(t)ρ†(v, t) dt +
√

0(t)dB. (IV.3)

Then, given all observations up to time t, Z†(t) = {z†(s)}s∈[0,t], the
filtering distribution is given by

ρ(·, t)|Z†(t) ∼ µ(t) ≡ N
(

m(t), C(t)
)

, (IV.4)

where N is a Gaussian measure on H with mean m(t) and covari-
ance operator C(t). For notational simplicity, we have dropped the
explicit dependence of m(t), C(t), and ρ(t) on v. Here, C ∈ L(H,H)
is necessarily self-adjoint and trace class;58 that is, tr(C) < ∞. In
what follows, the expectation Eµ is defined with respect to the
measure µ on the space of L2 densities ρ.

Using Theorem 7.10 in Falb (1967),59 the KB filter for this
system can be written as

dm(t) = L
∗(t)m(t) dt

+ C(t)H∗(t)0(t)−1
(

dz†(t)− H(t)m(t)
)

dt, (IV.5a)

dC(t) = L
∗(t)C(t) dt + C(t)L(t) dt

− C(t)H∗(t)0(t)−1H(t)C(t) dt, (IV.5b)

m(0) = m0, C(0) = C0, (IV.5c)

where

C(t) = cov(ρ(t)− m(t), ρ(t)− m(t)) (IV.6)

and

cov(x, y) ≡ Eµ[x ⊗ y] − Eµ[x] ⊗ Eµ[y]. (IV.7)

The outer-product x1 ⊗ y1 is defined by the identity

(x1 ⊗ y1)x = x1〈y1, x〉H, (IV.8)

holding for all x ∈ H. Note that Falb (1967)59 requires boundedness
of L∗, but the results have been extended to unbounded operators.60

However, we still require boundedness of H. For the rest of the
paper, we will assume that H takes the form in Eq. (II.3).

The adjoint operator H∗ is then given by

H∗(t)u = 〈h(v, t), u〉R
p , (IV.9)

for u ∈ R
p. Note that, formally, H∗(t)u is to be viewed as a function

of v, in the space H.
In general, the solution to Eq. (IV.5a), m(t), will not be nor-

malized. However, in Appendix A, we show that normalization is
preserved under certain conditions on the initializations m0 and
C0 from Eq. (IV.5b). However, m(t) is not guaranteed to be non-
negative for all v and t and, thus, cannot be a proper probability
density. Nonetheless, we can still consider integrals against it.

B. Ansatz and relation to KB filter for densities

Solving the KB filter equations directly is intractable. We, there-
fore, seek an equation that is amenable to a mean-field model, which,
in turn, can be approximated by a particle system. We propose the
following ansatz for the density of v|Z†(t):

∂ρ

∂t
= L

∗(t)ρ +
〈

h(v, t)− H(t)ρ,
dz†

dt
− H(t)ρ

〉

0(t)

ρ. (IV.10)

Note the similarity to the Kushner–Stratonovich (KS) equation (II.1).
Although the solutions to this equation do not match the KB filter
for densities in general, we show in Theorem 1 that they coincide in
observation space for linear f and h, under additional assumptions
detailed there. The proof sketch is provided in Appendix B.

C. Mean-field approximation

We would now like to find a mean-field model which has, as its
FP equation, Eq. (IV.10). We postulate the following form:

dv = f(v, t) dt +
√

6(t) dW + a(v, ρ, t) dt

+ K(v, ρ, t)
(

dz†−H(t)ρ(v, t) dt −
√

0(t)dB
)

. (IV.11)

Specifically, we aim to choose the pair of functions (a, K) so that the
Fokker–Planck equation for v governed by this mean-field model
coincides with Eq. (IV.10). In Appendix C, we detail the choices
that achieve this, and after making a further approximation of K,
we obtain Eq. (II.4) with (II.4a) replaced by (II.5). However, as
explained there, in many cases use of Eq. (II.4a), which corresponds
to setting a ≡ 0 and using a simple approximation of K, leads to
algorithms that empirically perform well.
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V. CONCLUSIONS

In this paper, we introduce the Fokker–Planck filtering prob-
lem, which consists of estimating the evolving probability density
of a (possibly stochastic) dynamical system given noisy observations
of expectations evaluated with respect to it. We provide a solution
to this problem using the KB filter in Hilbert space and introduce
an ensemble algorithm, the ensemble Fokker–Planck filter (EnFPF),
that approximates it under conditions on the dynamics and observ-
ables. We also show, through numerical experiments, that this
method can be used to accelerate convergence to the invariant mea-
sure of dynamical systems, and that this acceleration phenomenon
applies beyond the conditions on the dynamics and observables
required to provably link the KB filter and the mean-field model
underlying our proposed ensemble method.

Future work will test this method on higher-dimensional mod-
els, such as turbulent channel flows and ocean models. Other future
directions, as described in Sec. I B, include (i) the testing of this
method as an approach to counteract model error, (ii) use in param-
eter estimation, and (iii) use in the acceleration of sampling methods
such as Langevin dynamics and Markov chain Monte Carlo when
some statistics of the target density are known. Furthermore, many
of the numerical results require deeper understanding; these include
the impact of the assimilation frequency, the score term, and the
incorporation of higher-order moments, or other observables, on
the filter performance. Finally, on the theoretical side, there is a
considerable need for deeper analysis.
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APPENDIX A: PROPERTIES OF THE KB FILTER FOR

DENSITIES

Lemma 1 and Remark 2 below give the conditions under which
m(t) and ρ(t) ∼ N (m(t), C(t)) will be normalized. The function 1
is defined as 1(v) ≡ 1 for all v.

Lemma 1. Assume that ρ(0) ∼ µ(0) = N (m0, C0) with

{

〈m0,1〉H = 1,

C01 = 0.
(A1)

Then, for m(t) and C(t) satisfying Eqs. (IV.5a)–(IV.5b),

(a) C(t)1 = 0 for all t ≥ 0 and
(b) 〈m(t),1〉H = 1 for all t ≥ 0.

Proof. (Sketch)

(a) Since L1 = 0, we have

d

dt
(C1) = L

∗C1− CH∗0−1HC1. (A2)

Assuming uniqueness of the solution to Eq. (IV.5b) for the
evolution of C(t), we deduce that C(t)1 = 0 solves Eq. (A2).

(b) Applying Itô’s lemma to 〈m,1〉H (the Itô correction does not
appear due to linearity of the inner product),

d

dt
〈m,1〉H = 〈L∗m,1〉H +

〈

CH∗0−1(dz†−Hm),1
〉

H
,

= 〈m,L1〉H +
〈

H∗0−1(dz†−Hm), C1
〉

H
,

= 0, (A3)

since L1 = 0, C is self-adjoint by construction and C1 = 0 by
(a). Now assuming uniqueness of the Eq. (IV.5a) for m(t) we
find that 〈m(t),1〉H = 1 solves Eq. (A3).

�

Remark 2. If the conditions in Eq. (A1) hold then 〈ρ(t),1〉
= 1 for t ≥ 0 almost surely, where ρ(t) ∼ µ(t) = N (m(t), C(t)).
This is because 1 is in the null-space of both the symmetric operator
square-root of C(t),

√
C(t), and

ρ(t) = m(t)+
√

C(t)ξ , (A4)

where ξ ∼ N (0, I), with I being the identity. Thus,

〈ρ(t),1〉H = 〈m(t),1〉H + 〈
√

C(t)ξ ,1〉H,

= 1 + 〈ξ ,
√

C(t)1〉H,

= 1. (A5)

This explains the importance of the conditions in Eq. (A1): they ensure
that ρ(t) is normalized.
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APPENDIX B: THEOREM 1

Theorem 1. Assume that:

1. The system dynamics f and h are linear in state space: f(v, t)
= LTv and h(v, t) = Hv, with injective H.

2. 6 = 0.
3. ρ(0) is chosen such that its mean m(0) and covariance C(0)

satisfy
{

Hm(0) = Hm0,

HC(0)HT = HC0H
∗.

(B1)

4. m(t) stays in the subspace

S ≡
{

u ∈ H

∣

∣

∣

∫

|u(v)|vivjdv < ∞ ∀i, j ∈ {1, . . . , d}
}

and C(t) stays in L(S ,S), the space of bounded linear operators
from S into itself.

Then, under the same noise realization for Z†, Hm(t) = Hm(t)
and HC(t)HT = HC(t)H∗ will hold for t ≥ 0, where m(t) and C(t)
are the mean and covariance of ρ(t) obtained from Eq. (IV.10), and
m(t) and C(t) are given by the KB filter for densities (IV.5a)–(IV.5b).

Proof. (Sketch)
We give here the outlines of a proof, but a rigorous proof,

as well as analysis of whether the equivalence holds in any set-
ting more general than the above restrictive conditions will require
considerably more work.

We consider the evolution of the mean and covariance of the
KB filter for densities [Eqs. (IV.5a) and (IV.5b)] projected into
observation space,

d(Hm) = HL
∗m dt + HCH∗0−1(dz†−Hm dt), (B2a)

d(HCH∗) = HL
∗CH∗ dt + HCLH∗ dt

− HCH∗0−1HCH∗ dt, (B2b)

where H(t) = H is not time-dependent because h(v, t) = h(v)
= Hv. These equations now describe the time evolution of the
finite-dimensional quantities Hm and HCH∗.

Now, imposing f(v, t) = LTv and h(v, t) = Hv on the ansatz
[Eq. (IV.10)], the time evolution of ρ can be entirely characterized
by its mean and covariance, and we obtain the following equations
for them:

dm = LTm dt + CHT0−1(dz†−Hm dt), (B3a)

dC = LTC dt + CL dt − CHT0−1HC dt, (B3b)

where m ≡ E[v] and C ≡ E[(v − m)(v − m)T]. A similar calcula-
tion is made in, e.g., Sec. 7.4 of Jazwinski (1970).1 In observation
space, we have that

d(Hm) = HLTm dt + HCHT0−1(dz†−Hm dt), (B4a)

d(HCHT) = HLTCHT dt + HCLHT dt

− HCHT0−1HCHT dt. (B4b)

We would now like to show that Hm(t) = Hm(t) and
HC(t)HT = HC(t)H∗ for all t ≥ 0. We do this by showing that the

RHS of Eqs. (B2a) and (B2b) are equal to the RHS of Eqs. (B4a) and
(B4b) at time t∗ if Hm(t∗) = Hm(t∗) and HC(t∗)HT = HC(t∗)H∗.
Together with the initial conditions (B1) and uniqueness, this proves
the theorem.

It follows immediately that

HC(t∗)H∗0−1

[

dz†

dt
− Hm(t∗)

]

= HC(t∗)HT0−1

[

dz†

dt
− Hm(t∗)

]

(B5)

and that

HC(t∗)H∗0−1HC(t∗)H∗ = HC(t∗)HT0−1HC(t∗)HT. (B6)

Note that

Hm(t∗) = Hm(t∗) = H
∫

vm(t∗) dv, (B7)

which implies that

m(t∗) =
∫

vm(t∗) dv, (B8)

because H was assumed to be injective.
We proceed with the rest of the terms. For the first term of the

RHS of Eq. (B2a),

HL
∗m = H

∫

vL∗m dv,

= −H
∫

v∇ · (mf) dv,

= −HLT

∫

v∇ · (mv) dv,

= HLT

∫

vm dv,

= HLTm, (B9)

where the fourth line follows from integration by parts and the last
from Eq. (B8). Note that the boundary term in the integration by
parts vanishes from assumption 4. Thus,

HL
∗m = HLTm. (B10)

It remains to show that HL∗C(t∗)H∗ = HLTC(t∗)HT. We have
that for any u,

HC(t∗)H∗u = H
∫

vC(t∗)H∗u dv = HC(t∗)HTu. (B11)

Since H was assumed to be injective,

∫

vC(t∗)H∗u dv = C(t∗)HTu. (B12)
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Then, for any w,

HL
∗C(t∗)H∗w = H

∫

vL∗C(t∗)H∗w dv

= −H
∫

v∇ ·
(

C(t∗)H∗wLTv
)

dv,

= HLT

∫

vC(t∗)H∗w dv,

= HLTC(t∗)HTw, (B13)

where the third line follows from integration by parts (with the
boundary term vanishing by the same argument as above) and
the last line from Eq. (B12). Taking the adjoint demonstrates that
HC(v, t∗)LH∗ = HC(t∗)LHT, completing the proof. �

APPENDIX C: MEAN-FIELD APPROXIMATION

We omit the function arguments until the end of the subsec-
tion, for brevity. Using Eq. (3.30) from Calvello, Reich, and Stuart
(2022),9 we know that the FP equation of Eq. (IV.11) when f(v, t) = 0
and6 = 0 is

∂ρ

∂t
= −∇ · (ρ(a − KHρ))−

〈

∇ ·
(

ρKT
)

,
dz†

dt

〉

+ ∇ ·
(

∇ ·
(

ρK0KT
))

. (C1)

We now match the terms of Eqs. (C1) and (IV.10) to make
them equal. By matching the terms involving dz†/dt, we obtain that

0−1(h − Hρ)ρ = −∇ ·
(

ρKT
)

, (C2)

and matching the rest of the terms,

− ρ〈h − Hρ, Hρ〉0 = −∇ · (ρ(a − KHρ))+ ∇ ·
(

∇ ·
(

ρK0KT
))

.
(C3)

Substituting Eq. (C2) into Eq. (C3), we obtain

〈∇ ·
(

ρKT
)

, Hρ〉 = ∇ · (ρKHρ)

= −∇ · (ρ(a − KHρ))

+ ∇ ·
(

∇ ·
(

ρK0KT
))

. (C4)

Setting the term in the divergence to 0, we obtain

a = K0KT∇ log ρ. (C5)

This is the origin of the score function term discussed in
Sec. II E.

We propose a test function ψ(v) = v − Ev, take the outer
product of it with both sides of Eq. (C2), and integrate by parts,
obtaining the identity

EK = E[ψ(h − Hρ)T]0−1 = Cvh0−1, (C6)

where Cvh(t) ≡ E[(h(v, t)− Hρ)(h(v, t)− Hρ)T].
Fixing the value of the gain K to its expectation [the con-

stant gain approximation discussed in Calvello, Reich, and Stuart

(2022)9], we then obtain

K(t) = Cvh(t)0(t)−1. (C7)

Thus, the mean-field model is

dv = f(v, t) dt +
√

6(t) dW + K(t)
(

dz†−dẑ
)

+ K(t)0(t)K(t)T∇ log ρ(v, t) dt,

dẑ = (Eh)(t) dt +
√

0(t)dB,

which gives Eqs. (II.4), with Eq. (II.4a) replaced by Eq. (II.5).
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